Fujifilm X-T30 II - test aparatu
8. Zakres i dynamika tonalna
Czułość matrycy
Badanie to ma na celu pokazanie zachowania fotodiod matrycy, a nie jej realnej czułości w stopniach ISO, której zgodność producenci aparatów utrzymują dla formatu JPEG. Przestrzegamy zatem przed pochopnymi osądami. Jakiekolwiek odchyłki odnotowane w tym teście nie są powodem do zmartwień, gdyż zwykle są one korygowane do wartości nominalnej przy wywoływaniu pliku RAW (w korpusie aparatu przy wytwarzaniu bezpośrednio pliku JPEG lub też przy obróbce surowego pliku w komputerze). Realne problemy dotykają jedynie tego oprogramowania zewnętrznego, które nie posiada profili dedykowanych dla różnych aparatów. Czułość wyznaczyliśmy zgodnie z normą ISO 12232, wykorzystując metodę pomiaru ilości światła niezbędnej do saturacji poszczególnych grup fotodiod sensora. Do pomiarów wykorzystaliśmy światłomierz Sekonic.
Czułości jako średnie wartości ze wszystkich grup senseli dla nastaw natywnych są ok. 1.5 EV poniżej nominalnych, a dla rozszerzonych 25600 i 51200 nawet więcej. To spora wartość, daje jednak możliwość manipulacji danymi w jasnych partiach obrazu.
Szum przetwarzania
Szum przetwarzania (ang. readout noise) to całościowe zakłócenia generowane przez elektroniczny tor przetwarzania danych. Ilość tego szumu nie zależy od ilości padającego światła ani czasu ekspozycji.Szum przetwarzania wyznaczyliśmy w oparciu o serię zdjęć bez dostępu światła przy najkrótszej możliwej do ustawienia migawce. Pomiarów dokonaliśmy na surowych plikach przekonwertowanych uprzednio do 48-bitowych TIFF-ów bez demozaikowania. Dane na wykresie zostały zaprezentowane w punktach odpowiadających realnym czułościom matrycy, a wyniki odwzorowują średnią wartość z wszystkich grup senseli.
Wyrażenie wyniku w elektronach pozwala śledzić jakość przetwarzania toru analogowo-cyfrowego. Widzimy, że przebieg pokrywa zakres wartości od 6 do 2 elektronów, co oznacza, że jakość zaprojektowanej elektroniki stoi na całkiem wysokim poziomie. W testach innych aparatów z matrycami X-Trans CMOS IV wyniki dość wyraźnie sugerowały, że mamy do czynienia budową dual-gain. Tu natomiast nie jest to tak widoczne. Niemniej, charakterystyka wykresu sugeruje, że w X-T30 II też zastosowano dwa poziomy wzmocnień.
Współczynnik konwersji i wzmocnienie jednostkowe
Poniżej przedstawiamy współczynnik konwersji (ang. conversion gain) matrycy wyznaczony dla różnych nastaw ISO. Parametr ten definiuje liczbę elektronów przypadających na jednostkę kwantyzacji przetwornika ADC (tzw. ADU, ang. ADC unit). Analiza tych danych pozwala określić tzw. wzmocnienie jednostkowe, czyli cechę charakterystyczną każdej matrycy definiującą czułość, dla której współczynnik konwersji jest równy 1 – to znaczy wartość z przetwornika ADC pokazuje wprost liczbę przetworzonych elektronów.Współczynnik konwersji wyznaczyliśmy w oparciu o serię zdjęć tablicy Kodak Q-14. Pomiarów dokonaliśmy na surowych plikach przekonwertowanych uprzednio do 48-bitowych TIFF-ów bez demozaikowania. Dane na wykresie zostały zaprezentowane w punktach odpowiadających realnym czułościom matrycy, a wyniki odwzorowują średnią wartość z wszystkich grup senseli.
Dla najniższej natywnej czułości przypada prawie 5 elektronów. Przy 14-bitowym przetworniku daje to pojemność studni potencjałów (ang. full well capacity) na poziomie 78 ke–. Wynik ten jest całkiem wysoki. Widać też, że punkt wzmocnienia jednostkowego wypada dla czułości 353 (czyli nieco poniżej nastawy ISO 800). Przekroczenie tego progu powoduje, że za jakość obrazu odpowiadają już tylko i wyłącznie algorytmy cyfrowej obróbki sygnału, a nie tor analogowy matrycy. W związku z czym nie ma żadnego zysku ze stosowania takiej obróbki w aparacie i dokładnie te same efekty uzyskamy niedoświetlając zdjęcie, a następnie korygując ekspozycję w komputerze.
Zakres tonalny
Zakres tonalny, będący miarą liczby rozróżnianych przejść tonalnych pomiędzy skrajnymi wartościami czerni i bieli, mówi nam, jak bardzo szum redukuje jakość zdjęcia, powodując posteryzację.Zakres tonalny wyznaczyliśmy w oparciu o serię zdjęć tablicy Kodak Q-14. Pomiarów dokonaliśmy na surowych plikach przekonwertowanych uprzednio do 48-bitowych TIFF-ów bez demozaikowania.
Najwyższą jakość obrazu otrzymamy dla trzech najniższych czułości, dla których aparat zarejestruje ponad 200 przejść tonalnych. Dla ISO 160 liczba tonów wynosi 338, co daje 8.4-bitowy zapis danych. X-T30 II wypada bardzo podobnie jak E-M10 Mark IV (8.3-bita) i trochę słabiej względem A6400 (8.6 bita). Najlepiej natomiast poradził sobie w tym teście Nikon Zfc (9 bitów).
Zakres tonalny na plikach zapisanych w formacie JPEG możemy ocenić wizualnie na wycinkach zdjęć tablicy Stouffer T4110. Kliknięcie na zdjęcie poniżej otworzy wycinek w pełnej rozdzielczości. Odległość pomiędzy sąsiednimi polami szarości wynosi 0.3 EV.
ISO | Granica czerni i bieli | |||
80 |
|
|||
100 |
|
|||
160 |
|
|||
200 |
|
|||
400 |
|
|||
800 |
|
|||
1600 |
|
|||
3200 |
|
|||
6400 |
|
|||
12800 |
|
|||
25600 |
|
|||
51200 |
|
Dynamika tonalna
Dynamikę tonalną wyznaczyliśmy w oparciu o serię zdjęć tablicy Kodak Q-14. Pomiary wykonaliśmy na surowych plikach przekonwertowanych uprzednio do 48-bitowych TIFF-ów bez demozaikowania. Na wykresie przedstawiamy wartości zakresu tonalnego dla wysokiej, dobrej, średniej i niskiej jakości obrazu. Odpowiada to stosunkom sygnału do szumu na poziomie 10, 4, 2 i 1.
Dla najlepszej jakości obrazu przy ISO 160 (najniższej natywnej czułości) testowany aparat osiągnął dobry wynik 9.2 EV. Lepszym natomiast może się znów pochwalić Nikon Zfc – 9.9 EV. E-M10 Mark IV i A6400 to aparaty, w których wykorzystywane jest 12-bitowe przetwarzanie danych i uzyskały odpowiednio 8.1 i 8.3 EV.
Biorąc pod uwagę kryterium niskiej jakości obrazu, dla bazowej czułości mamy do dyspozycji dynamikę na poziomie 13.5 EV, co oznacza, że niewiele brakuje, by wykorzystywany był praktycznie cały zakres pracy przetwornika ADC. Przy ISO 400–800 zauważymy charakterystyczne załamanie dla jakości niskiej, średniej i dobrej, które sugeruje, że matryca X-T30 II charakteryzuje się różnym wzmocnieniem dla różnych czułości ISO.
Poniżej przedstawiamy pełne wykresy SNR wygenerowane na podstawie wykonanych pomiarów dla wszystkich czułości aparatu.
Wartość 0 na osi OX oznacza maksymalną wartość, którą aparat może zapisać w pliku RAW. Na prawej osi OY oznaczyliśmy miejsca dla kryteriów SNR=10 (wysoka), 4 (dobra), 2 (średnia) i 1 (niska). Przy pomocy tego wykresu każdy może oszacować dostępną dynamikę dla wybranej przez siebie minimalnej użytecznej jakości obrazu. Wystarczy poprowadzić poziomą linię wzdłuż wybranego kryterium i odczytać wartość na osi OX, dla której linia ta przecina się z wykresem dla odpowiedniej czułości. Gdy np. uznamy za kryterium minimalnej użytecznej jakości 12 dB, widzimy, że dla ISO 1600 dynamika wynosi ok. 8.5 EV.
Przy omawianiu zakresu tonalnego pokazujemy tradycyjnie, jak zachowują się zdjęcia przy obróbce komputerowej, kiedy rozjaśniamy je lub przyciemniamy. Zdjęcia wykonaliśmy przy następujących parametrach ekspozycji: ISO 200, f/16 i 30 s oraz ISO 1600, f/11 i 2 s. Następnie wywołujemy je jako 48-bitowe TIFF-y dcrawem i w Lightroomie rozjaśniamy o +4 EV oraz przyciemniamy o −4 EV, po czym zapisujemy jako zdjęcia 24-bitowe.
|
|
|
|
160 ISO | |||
|
|||
200 ISO | |||
|
|||
1600 ISO | |||
|
|||
|
Na rozjaśnionych zdjęciach z Olympusa widać sporo wyższy poziom szumu niż w przypadku X-T30 II i to dla obu czułości. Choć przy ISO 1600 na obu wycinkach rzuca się w oczy wysoki poziom zakłóceń.
Po przyciemnieniu jasnych partii obrazu, na wycinku z Olympusa przy ISO 200 można się dopatrzeć odzyskania śladowych ilości detali. Poza tym, nie widać większych różnic pomiędzy obydwoma bezlusterkowcami.
|
|
|
|
160 ISO | |||
|
|||
200 ISO | |||
|
|||
1600 ISO | |||
|
|||
|